统计方法
获取 GitHub 2019 年的 PushEvent,通过分析 GitHub 用户提交记录中的邮件地址,分辨其所属组织。
具体方法参考:www.freecodecamp.org/news/the-to…
分析工具
Google Big Query
Data Studio
SQL 语句
由于 Google Big Query 每月只能免费获取 1TB 的数据处理量,因此,为了充分利用它,我们将数据查询限制在一定的日期范围(20190301-20191001)内,确保数据处理量接近而不超过 1TB。
此日期范围内的数据可大致反映 2019 全年 GitHub 各组织开源贡献度情况。
SELECT * FROM `githubarchive.month.2019*` a WHERE _TABLE_SUFFIX BETWEEN '0301' AND '1001' 复制代码
完整的 SQL 语句编写如下:
#standardSQL WITH period AS ( SELECT * FROM `githubarchive.month.2019*` a WHERE _TABLE_SUFFIX BETWEEN '0301' AND '1001' ), repo_stars AS ( SELECT repo.id, COUNT(DISTINCT actor.login) stars, APPROX_TOP_COUNT(repo.name, 1)[OFFSET(0)].value repo_name FROM period WHERE type='WatchEvent' GROUP BY 1 HAVING stars>20 ), pushers_guess_emails_and_top_projects AS ( SELECT *, REGEXP_EXTRACT(email, r'@(.*)') domain FROM ( SELECT actor.id , APPROX_TOP_COUNT(actor.login,1)[OFFSET(0)].value login , APPROX_TOP_COUNT(JSON_EXTRACT_SCALAR(payload, '$.commits[0].author.email'),1)[OFFSET(0)].value email , COUNT(*) c , ARRAY_AGG(DISTINCT TO_JSON_STRING(STRUCT(b.repo_name,stars))) repos FROM period a JOIN repo_stars b ON a.repo.id=b.id WHERE type='PushEvent' GROUP BY 1 HAVING c>3 ) ) SELECT * FROM ( SELECT domain , githubers , (SELECT COUNT(DISTINCT repo) FROM UNNEST(repos) repo) repos_contributed_to , ARRAY( SELECT AS STRUCT JSON_EXTRACT_SCALAR(repo, '$.repo_name') repo_name , CAST(JSON_EXTRACT_SCALAR(repo, '$.stars') AS INT64) stars , COUNT(*) githubers_from_domain FROM UNNEST(repos) repo GROUP BY 1, 2 HAVING githubers_from_domain>1 ORDER BY stars DESC LIMIT 3 ) top , (SELECT SUM(CAST(JSON_EXTRACT_SCALAR(repo, '$.stars') AS INT64)) FROM (SELECT DISTINCT repo FROM UNNEST(repos) repo)) sum_stars_projects_contributed_to FROM ( SELECT domain, COUNT(*) githubers, ARRAY_CONCAT_AGG(ARRAY(SELECT * FROM UNNEST(repos) repo)) repos FROM pushers_guess_emails_and_top_projects #WHERE domain IN UNNEST(SPLIT('google.com|microsoft.com|amazon.com', '|')) WHERE domain NOT IN UNNEST(SPLIT('gmail.com|users.noreply.github.com|qq.com|hotmail.com|163.com|me.com|googlemail.com|outlook.com|yahoo.com|web.de|iki.fi|foxmail.com|yandex.ru', '|')) # email hosters GROUP BY 1 HAVING githubers > 30 ) WHERE (SELECT MAX(githubers_from_domain) FROM (SELECT repo, COUNT(*) githubers_from_domain FROM UNNEST(repos) repo GROUP BY repo))>4 # second filter email hosters ) ORDER BY githubers DESC
从下图中可以看到,本次查询统计将会处理 918.4GB 的数据。
统计结果
点击运行,经过 17.8s,我们可以看到查询结果。
顶级组织比较
从上图我们可以看出:
微软谷歌在开源贡献度上遥遥领先,位列 3-5 位的分别是 redhat、intel 和 amazon;
微软谷歌均有超过 1000 名员工(githubers)向多个 GitHub 仓库(repos_contributed_to) push 代码;
对于微软,2019 Top3 仓库分别是 Terminal、vscode 和 TypeScript,而谷歌则是 flutter、tensorflow 和 kubernetes。
排在 6-10 位的分别是 Pivotal、Facebook、Apache、SAP 和 Shopify。
国内大厂比较
国内大厂开源贡献度最高的当属阿里员工,排在第十二位,top3 仓库分别是 flutter-go、nacos 和 sqlflow,所有项目共获得 stars 数超过 90000。
百度和腾讯则分列 21、23 位。
总览
开源贡献度前 38 位名单如下:
作者:yanglbme
链接:https://juejin.im/post/5db50df45188256499774499
来源:掘金