提高代码的质量、安全性和可维护性,软件工程师每天会用到无数工具。
我会列出一些自己最喜欢的 python 工具,并从易用性(是否易于安装、运行和自动化)、质量影响(能否阻止可预见的 bug)、可维护性影响(是否让工作更轻松)和安全性影响(能否发现并阻止安全性问题)对它们进行打分,以供读者参考。
并且,我还将介绍如何将这些工具全包含进 CI pipeline,从而实现自动化和高效。
1.Pipenv
它是为Python 设计的开发管理和依赖管理的工具,最早由 Requests 的作者 Kenneth Reitz 编写。
如果你用 python 做过一段时间的开发,那么管理环境,你可能用过 virtualenv 或 venv ;依赖管理可能用过较可靠的pip freeze > requirements.txt
。
大多数情况下,这完全没问题。但是,我发现 pipenv 更方便,且很强大,加上它通过Pipfile
和Pipfile.lock
近乎去掉固定依赖的做法,很大程度上替代了requirements.txt
,从而带来更可靠的部署。
不过,我对 pipenv 的未来有点担忧,因为 Python 基金会已搁置对 pip 的改进。而且,pipenv 在 2019 年缺乏实质性进展。但是,我仍然认为,对大多数 python 用户来说,pipenv 是绝佳的工具。
月下载量: 2111976
备选方案: poetry 、 virtualenv 、 venv
2.Ochrona
这里,我有点私心,因为 Ochrona 是我积极开发并希望 2020 年发布的工具。不过,我还会介绍这个工具的替代方案。
Ochrona 是一款依赖分析和软件组成分析的工具,它可以用来检查你的开源依赖是否存在已知漏洞。这个领域,另一款很流行的开源工具是 pyup.io 的 Safety 。
我认为,Ochrona 比 Safety 更好的地方在于:
无论是用于开源项目还是商业项目,它都提供免费方案,而且免费方案始终跟进最新的漏洞信息。
磁盘和 IO 使用非常少。不同于需要拉取整个漏洞数据库的本地工具,它是 SaaS 模式,只需调用一次公开的 API。
它提供优秀的漏洞数据并且每天更新,并比其他工具提供更多的漏洞详细信息,包括免费用户。
月下载量: 尚未发布
3.Bandit
如果必须推荐一个可提高 python 项目安全性的工具,那我推荐 Bandit 。
据悉,Bandit 出自 OpenStack,但现在由 PyCQA 维护。它是一款开源的 SAST(静态应用安全测试)工具,免费、可配置且快速。从某些方面来讲,它就像是关注安全领域的 linter。
Bandit 很适合用来发现问题,比如不安全的配置、已知的不安全模块使用情况等。
月下载量: 575101
4.Black
Black 是一款独特的代码格式化工具。它能自动将你的代码更正为 Black 样式(一个 Pep-8 的超集)。
传统的 linter 通常需要你把代码改为合规代码,而 Black 可以节省不少时间。并且,Black 只需有限的配置,这意味着你如果用过 Black,其他任何项目你都会觉得眼熟。
月下载量: 1891711
备选方案:flake8、pylint
5.Mypy
它是python 一个可选的静态类型检查器。 PEP 484 引入 python 的类型提示,Mypy 则利用这些类型提示对项目进行静态类型检查。
Python 依然有动态的 duck 类型,不过,添加静态类型检查能帮你减少测试和调试时间,更早发现错误。
目前,大公司也在跟进 python 的静态类型检查。在 Guido van Rossum 任职期间,Dropbox 用 Mypy 检查了 400 多万行代码。其他的 python 用户,比如 Instagram 也开始做静态类型检查。
月下载量: 2487228
备选方案: pyre
全部集成到一起
这个例子种,我会用到 Travis-CI ,配置其他 CI 工具的过程与之类似相似,只是语法上会有差异。这里,我用一个简单、不安全且有问题的 flask 应用作为例子。
app.py
文件如下:
复制代码
from flask import Flask app = Flask(__name__) @app.route('/<name>') def hello_world(name: str) -> str: return hello_name(name)def hello_name(name: str) -> int: return f"hello, {name}" if __name__ == '__main__': app.run(debug=True)
Pipfile
如下:
复制代码
[[source]]name = "pypi"url = "https://pypi.org/simple"verify_ssl = true[dev-packages]bandit = "*"v = {editable = true,version = "*"}black = "*"mypy = "*"ochrona = "*"[packages]flask = "==0.12.2"[requires]python_version = "3.7"
最后在根目录下创建一个.travis.yml
文件,内容如下:
复制代码
language: pythonpython: - 3.7install: - pip install -U pip - pip install pipenv - pipenv install --devscript: - bandit ./* - black --check . - ochrona - mypy .
如果查看这里的构建,你会发现每个工具都标出错误或指出需修改的地方。那么,我们来做一些修正,如这个 PR 所示,构建就可以通过。
将 Flask 升级到一个没有已知漏洞的版本
修复类型注释,禁用调试模式,规范格式
虽然这个例子只涉及一个 CI 平台,但其实和集成到其他大多数平台的方法都很相似。
下面是一个总的评分表:
英文原文:
Top Python Tools for Developing Secure, Quality Code